Rigoberto Carlos Proleón Patricio

O Estado Estacionário do Gás Granular

Tese de Doutorado

Tese apresentada ao Programa de Pós Graduação em Física do Departamento de Física da PUC-Rio como parte dos requisitos parciais para a obtenção do título de Doutor em Física.

Orientador: Welles Antônio Martinez Morgado

Rigoberto Carlos Proleón Patricio

O Estado Estacionário do Gás Granular

Tese apresentada ao Programa de Pós Graduação em Física do Departamento de Física da PUC-Rio como parte dos requisitos parciais para a obtenção do título de Doutor em Física. Aprovada pela Comissão Examinadora abaixo assinada.

Welles Antônio Martinez Morgado

Orientador

Departamento de Física - PUC-Rio

Rosane Riera Freire

Pontifícia Universidade Católica do Rio de Janeiro

Maria Oswald Machado de Matos

Pontifícia Universidade Católica do Rio de Janeiro

Carlos Maurcio Giesbrecht Ferreira Chaves

Universidade Federal do Rio de Janeiro

Evaldo Mendona Fleury Curado

Centro Brasileiro de Pesquisas Físicas

José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rigoberto Carlos Proleón Patricio

Graduou-se bacharel em ciências com menção em física na UNI (Universidad Nacional de Ingenieria, Lima-Peru). Mestre em física no CBPF (Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro).

Ficha Catalográfica

Proleón Patricio, Rigoberto Carlos

O estado estacionário do gás granular/ Rigoberto Carlos Proleón Patricio; orientador: Welles Antônio Martinez Morgado. – Rio de Janeiro: PUC, Departamento de Física, 2004.

94 f.: il.; 30 cm

Tese (doutorado) Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física.

Inclui referências bibliográficas.

Física - Teses.
 Sistemas granulares.
 Separação de escalas de tempo.
 Inelasticidade.
 Alimentação de energia.
 Morgado, Antônio Martinez.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Fí sica.
 Título.

CDD: 530

A meus filhos: Camille Adriana e Carlos Santhiago.

Agradecimentos

Ao meu orientador, professor Welles Morgado, por haver-me dado a possibilidade de realizar esta tese. Pela paciência com que me ajudou a sua conclusão e fundamentalmente por seu otimismo contagiante.

Ao departamento de Física da Pontifícia Universidade Católica do Rio de Janeiro por haver-me brindado os meios para a realização deste trabalho. A Luis Peche por haver-me cedido gentilmente o uso do seu computador.

Ao CNPQ pela bolsa concedida.

À banca examinadora.

A meus pais Rigoberto e Maria, meu irmão Daniel e a minha esposa Maribel que sempre me apoiaram de maneira bastante abnegada em todos meus objetivos assim como à conclusão deste trabalho.

Resumo

Proleón, Rigoberto; Morgado, Welles Antônio Martinez. Rio de Janeiro, 2004. 92p. Tese de Doutoramento - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Estendemos o formalismo de Fokker-Planck que foi usado previamente para descrever, a partir de primeiros princípios, o comportamento de um gás granular em esfriamento, com potencial de contato Hertziano e força de atrito viscoelástica o qual resulta em um sistema com coeficiente de restituição que depende da velocidade. Nesta tese é estudado, também a partir de primeiros princípios, o caso mais geral, o de um estado estacionário com energia cinética finita e fora do equilíbrio, devido ao acoplamento a um mecanismo externo de alimentação de energia. Estende-se assim a validade do resultado prévio.

Palavras-chave

Sistemas Granulares, Separação de Escalas de Tempo, Inelasticidade, Alimentação de Energia.

Abstract

Proleón Patricio, R.; Morgado, M. A. M. Rio de Janeiro, 2004. 92p. Tese de Doutoramento - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

We extend the Fokker-Planck formalism used previously¹ to describe the behavior of a cooling granular gas, with a Hertzian contact potential and viscoelastic radial friction, giving a velocity dependent coefficient of restitution. In this thesis, we study the more general case of a steady-state with finite kinetic, energy and far from equilibrium, due to the coupling to an external energy-feeding mechanism, also from first-principles, and extend the validity of the former results.

Keywords

Granular Systems, Time-scale separation, Inelasticity, Energy feeding.

Sumário

1 Introdução	12
1.1 Sistemas granulares	12
1.1.1 Sistemas granulares compactos	12
1.1.2 Sistema granular fluidizado	14
1.1.3 Validade da Hidrodinâmica nos Sistemas Granulares	17
1.2 Aglomerados e Colapso inelástico	19
1.3 Distribuição de velocidades no gás granular	20
1.4 Teoria cinética	26
1.5 Abordagem aos Gases Granulares a partir de primeiros princípios	33
1.6 Objetivo	36
2 Sistema Granular com Alimentação de energia externa	39
2.1 Formulação Canônica	39
2.2 Alimentação de energia - modelo democrático	41
2.3 Alimentação de energia sem dissipação microscópica	44
3 Distribuição das variáveis externas (granulares)	46
3.1 Equação de Fokker-Plank	46
3.2 Eliminação de variáveis rápidas	46
3.3 Aplicação do método	47
3.3.1 Operador de projeção	47
3.3.2 Obtenção da equação de Fokker-Planck	48
3.4 Coeficiente de dissipação	51
3.5 Energia cinética média por unidade de tempo	53
4 A evolução temporal da função distribuição no Gás Granular	55
4.1 A hierarquia BBGKY	55
4.2 Ordens de grandeza das equações	56
4.3 Separação em escalas de tempo	57
4.4 Cancelamento de termos seculares	58
4.5 O termo de colisão de Boltzmann	61
4.6 A contribuição dissipativa e o termo de alimentação de energia	62
5 O Gás Granular livre	65

Sumário

5.1 Estado de esfriamento Homogêneo - HCS 65 5.1.1 Expansão por polinômios de Sonine 65 Cálculo de μ_2 66 Cálculo de μ_4 67 5.1.2 Comportamento a longo-prazo 67 5.1.3 Análise da cauda da distribuição de velocidades para o estado de resfriamento homogêneo 70 6 O Estado estacionário 73 6.1 Operadores de Colisão 73 6.2 Distribuição de cauda 75 Conclusões 78 Referências 80 A Apêndices 82 A.1 Eliminação das variáveis rápidas 82 A.2 Expansão em polinômios de Sonine com coeficientes dependentes do 85 tempo A.2.1 Fundamentos 85 A.2.2 Polinômios de Sonine 87 A.2.3 Expansão da distribuição de velocidades em polinômios de Sonine 88 A.2.4 Integrais importantes 90 A.3 Equação de Boltzmann para valores grandes da velocidade 92

8

Lista de Figuras

1.1	Sistema contendo grãos de mostarda. H.M.Jaeger, S.R. Nagel, R.P. Behringer, Phys. Today 49 (1996).	13
1.2	Vista esquemática da evolução de uma pilha; J. J. Alonso et al. Phys. Rev. E ${\bf 58}~1998$	14
1.3	Posição dos grãos de areia em duas sucessivas sacudidas; L. P. Kadanoff, Rev. Mod. Phys. $71 \ (1999)$	18
1.4	Compactação de um material granular.L. P. Kadanoff, Rev. Mod. Phys. $71\ (1999)$	19
1.5	Simulação do movimento granular para (a) $r\!=\!0.99$ e (b) $r\!=\!0.6$ McNamara, S., and W. R. Young, 1994, Phys. Rev. E ${\bf 50}$ R28-R31	20
1.6	Descrição do movimento granular para um sistema formado de 40000 partículas com $r\!=\!0.6$. Goldhirsch, I., and G. Zanetti, 1993, Phys. Rev. Lett. ${\bf 70}$, 1619	21
1.7	Evolução esquemática da função distribuição de velocidades na presença dos aglomerados. H. J. Hermann, S. Luding, R. Cafiero Physics A $\bf 295$ (2001)	22
1.8	(a)Distribuição escalada com a velocidade horizontal, $P(v_x/\sigma)$, para $\rho = 0.15$ e diferentes valores de f e Γ . A linha pontilhada é uma Gaussiana $\exp[-\frac{1}{2}(v_x/\sigma)^2]$. (b) A pendente da linha experimental é -1.52 ; as linhas pontilhadas com pendentes -1 e -2 correspondem a uma exponencial e a uma gaussiana respectivamente. F. Rouyer and N. Menon; Phys. Rev. Lett. $85(2000)$	24
1.9	$N_R(n)$, o número de vezes que $n-1$ esferas são contadas dentro de um circulo de raio R (para $R=2.6$ mm e $\rho=0.25$). F. Rouyer and N. Menon; Phys. Rev. Lett. $85(2000)$	25
1.10	$0P(v_x/\sigma)$ para diferentes valores da densidade local n . A linha sólida corresponde à função $\exp[-0.80(v_x /\sigma)^{3/2}]$. F. Rouyer and N. Menon; Phys. Rev. Lett. $85(2000)$	25
1.11	$P(v_x/\sigma)$ para diferentes valores de ρ . A linha sólida corresponde à função $\exp[-0.80(v_x /\sigma)^{3/2}]$. F. Rouyer and N. Menon; Phys. Rev. Lett. $85(2000)$	26
1.12	2O coeficiente $a_2(t)$: $a_2(t) \times 1000$ para $\delta = 0.001, 0.005, 0.01$ e 0.015 (de baixo para cima). N. V. Brilliantov and T. Pöschel, Phys. Rev. E 61 (2000)	34

1.13 O coeficiente $a_2(t)$ de sonine para valores grandes da dissipação δ : $a_2(t) \times 100$ para $\delta = 0.1, 0.11, 0.12, \ldots, 0.20$ (de baixo para cima). direita $a_2(t) \times 100$ para $\delta 0.16$. N. V. Brilliantov and T. Pöschel, condmat/0203401 35

1.14 O coeficiente $a_2(t)$ de sonine para valores grandes da dissipação δ : $a_2(t) \times 100$ para $\delta 0.16$. N. V. Brilliantov and T. Pöschel, condmat/0203401 35

6.1 Dependência de φ em relação a u para $\varphi_0 = 0.99$ e $u_0 = 40$ 77

6.2 Dependência de φ em relação a u para φ_0 = 0.9 e u_0 = 40

Lista de Figuras

10

77